MATH 347: FUNDAMENTAL MATHEMATICS, FALL 2015

PRACTICE PROBLEMS FOR CHAPTER 14 AND THEIR SOLUTIONS

1. Let (x,), be a sequence and a, b be reals with a < b. Suppose that for each N € N there is
n > N such that x, € [a,b]. Prove that (z,), has a convergent subsequence whose limit
is in [a, b].

Solution. Note that choosing increasing values of N we can get many indices n for which
x, € [a,b]. More precisely:

Claim. There is a subsequence (x,, ) all of whose members are in [a, b].

Proof of Claim. We define such a subsequence by induction as follows. For k =1, taking
N :=1, we get ny > 1 with x,,, € [a,b]. For k =2, we take N :=n; +1 and get ny > N >ny
with z,, € [a,b]. Continue by induction: assuming ny is defined, we take N :=n; + 1 and
get ngy > N > ny with z,, | € [a,b]. Thus, we get a subsequence (z,, )x all of whose
members are in [a, b]. —i

The subsequence (z,, )i is bounded because it is contained in [a, b], so by the Bolzano—
Weierstrass theorem, it has a convergent subsequence (xnkl)l. Because each member of
this subsequence is > a and < b, so must be its limit because limits respect > and <, as
proven in class. Hence, llilg Ty, € [a,b]. O

2. Suppose that for each n € N, |z,,.1 — x,| < 5, and prove that (z,), is Cauchy. Deduce
that (x,), converges.

Solution. For any natural numbers m > n, we can bound the distance |z,, — x,,| using the
distances between the consecutive members and the triangle inequality:

|xn - Im' < |xn - xn+1| + |l'n+1 - xn+2| +...+ |xm—1 - $m|
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But we know that 2% — 0 (by the way, how do you prove this without using log?), so
given an arbitrary € > 0, there is an event N € N such that Vn > N, 2% < . Therefore, for
allm>n>N,

|xn—xm|<2—n<a.

This, by definition, means that (x,,), is Cauchy, so by the Cauchy Convergence Criterion,
it converges. 0

3. Let (z1)x be a sequence.

(a) Define another sequence (a,), such that for each k € N, z}, is the kth partial sum of

the series Z Q-

n=1



Solution. We need to find (a, ), satisfying the following system of linear equations:

a = I
al +ag =To

a1 +ag+a3 =23

ay+ag+...+a =Tk

Thus, put a; := x1, as := x5 — 1, a3 := r3— T9, and so on. More formally, by induction,
supposing that z;_; is indeed the (k—1)* partial sum, we see that xy = a;+as+...+ay =
(a1 +ag + ...+ ax_1) + ax = Tp_1 + ax, which gives

Qp =T — T-1-
One can now verify, once again, that defining a;, this way indeed satisfies the desired
property:
k

Yoan=ar+as+ ... +a
n=1

=z + (ry—1) + (23 —x2) + ... (Tpo1 — Tp_2) + (T — Tp1) = T
[l

(b) Once again, suppose that for each n € N, |z,,1 — 25| < 37, and, using part (a) and the
comparison test for series, prove that (z,), converges.

HINT: By part (a), the sequence (z,)x converges if and if ) a, converges.

n=1
Solution. As the hint states, it is enough to prove that the series Z a, converges. But
n=1

o0
note that |a,.1| = [2p41 -2, < 7 and the series > o COLVerges, so by the Comparison
n=0

[ee]
Test for series, Z a, also converges. U
n=1

4. Fix areal A > 1.
k
(a) Prove that for any fixed integer k >0, lim % =0.

Solution. We use the ratio test for sequences:
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so, lim % =0. 0
(b) Conclude that for any polynomial p(x), lim Z% =0.
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Solution. Let p(x) = agx® + ag_12% ! + ... + a;x + ap. Because the limit respects multi-
plication and addition, by part (a), for each 0 < k < d, the sequence (p (n )) converges,
we get

( nk d nk d
lim = lim Z ak— = Z ap lim — | = Z(ak~0) =0.
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O
(c) Also prove that for any polynomial p(z), Z p(n converges.
n=1
Solution. Firstly, note that we cannot conclude the convergence of Z p( ) from the

fact that - (Z) — 0 because the latter is only a necessary condltlon for convergence

of series, but it is not sufficient (remember Z —). Thus, we have to come up with
n=1 T

something else.

Note that if " a, and ) b, both converge, then so does > (a, +b,) (why?); also,

n=1 n=1 n=1
oo

if ¥ a, converges and ¢ € R, then ) (ca,) converges. Therefore, writing p(z) =

n=1 n=1
k

[e o]
o n
agrt+ag_1x% 1 + ...+ a1z + ag, we see that it is enough to show that Z ~ converges,

n=1
for any fixed integer k > 0.
(n+1)F
To this end, we use the ratio test for series. As calculated in part (a), 25— — 5 <1,
bl
so the series converges. 0]

5. Let (a,), be a sequence of non-negative reals. Prove that if z a, converges, then for any
n=1

[ee]
k>1, Z a” also converges.

n=1
Solution. Which is bigger, a,, or a®? This, of course, depends on whether a, <1 or not,
but we are not given this information. However, we know that Z a, converges, which

implies that a, — 0. Therefore, even though the first hundrednnaillion terms may be
greater than 1, eventually, a, < 1. Because the convergence of series doesn’t depend on
the first finitely many terms, we may assume without loss of generality that a, < 1 for
every n € N. Thus, af < a, and the comparison test applies. O

6. (a) Suppose that Z a? and Z b2 both converge, and prove that Z a,b, converges.

n=1 n=1 n=1

Solution.



2,12
Lemma. For any a,beR, ab< 2=,

Proof. Follows from a? + b + 2ab = (a + b)? > 0. -
o0 oo o0 1

Because both )" a2 and )’ b2 converge, so does the series ) 5(@% +b2). Therefore,
n=1 n=1 n=1

by the lemma and the comparison test, the series Z a,b, also converges. O

n=1

(b) For each real A > 2, construct an example of (a,)n, (by), such that » a and > b)

n=1 n=1

both converge, but Z anb, diverges.
n=1

Solution. Put a, = b, = —5. Then, a) = b) = —5. Because A\/2 > 1, the series

> 1 > 1
Z —— converges (we proved this in class). However, a,b, = £ and the series Z —
n=1 n/\/Q " n=11
diverges. 0

. (Tricky) Let (x,), be sequence and L € R. Suppose that any subsequence (z,, ); has a
further subsequence (z,, ); that converges to L. Prove that (z,), converges to L.

HINT: Prove the contrapositive. Assume that (z,), doesn’t converge to L and build a
subsequence “far” from L.

Solution. Suppose for contradiction that it is not true that (x,), converges to L. By
definition, this means that there is € > 0 such that for every N € N (i.e. no matter how
far we go) there is an index n > N with |z, — L| > . Using this, just like we did in the
proof of Claim in Problem 1 above, we get a subsequence (z,, )i such that |z,, —L| > ¢
for every k € N. However, by our hypothesis, this subsequence must contain a further
subsequence that converges to L, which is impossible (every term of that subsequence is
at least ¢ distance away from L). O



