MATH 347: FUNDAMENTAL MATHEMATICS, FALL 2015

PRACTICE PROBLEMS FOR CHAPTER 14 AND THEIR SOLUTIONS

1. Let $\left(x_{n}\right)_{n}$ be a sequence and a, b be reals with $a<b$. Suppose that for each $N \in \mathbb{N}$ there is $n \geq N$ such that $x_{n} \in[a, b]$. Prove that $\left(x_{n}\right)_{n}$ has a convergent subsequence whose limit is in $[a, b]$.

Solution. Note that choosing increasing values of N we can get many indices n for which $x_{n} \in[a, b]$. More precisely:

Claim. There is a subsequence $\left(x_{n_{k}}\right)_{k}$ all of whose members are in $[a, b]$.
Proof of Claim. We define such a subsequence by induction as follows. For $k=1$, taking $N:=1$, we get $n_{1} \geq 1$ with $x_{n_{1}} \in[a, b]$. For $k=2$, we take $N:=n_{1}+1$ and get $n_{2} \geq N>n_{1}$ with $x_{n_{2}} \in[a, b]$. Continue by induction: assuming n_{k} is defined, we take $N:=n_{k}+1$ and get $n_{k+1} \geq N>n_{k}$ with $x_{n_{k+1}} \in[a, b]$. Thus, we get a subsequence $\left(x_{n_{k}}\right)_{k}$ all of whose members are in $[a, b]$.

The subsequence $\left(x_{n_{k}}\right)_{k}$ is bounded because it is contained in $[a, b]$, so by the BolzanoWeierstrass theorem, it has a convergent subsequence $\left(x_{n_{k_{l}}}\right)_{l}$. Because each member of this subsequence is $\geq a$ and $\leq b$, so must be its limit because limits respect \geq and \leq, as proven in class. Hence, $\lim _{l \rightarrow \infty} x_{n_{k_{l}}} \in[a, b]$.
2. Suppose that for each $n \in \mathbb{N},\left|x_{n+1}-x_{n}\right| \leq \frac{1}{2^{n}}$, and prove that $\left(x_{n}\right)_{n}$ is Cauchy. Deduce that $\left(x_{n}\right)_{n}$ converges.

Solution. For any natural numbers $m>n$, we can bound the distance $\left|x_{n}-x_{m}\right|$ using the distances between the consecutive members and the triangle inequality:

$$
\begin{aligned}
\left|x_{n}-x_{m}\right| & \leq\left|x_{n}-x_{n+1}\right|+\left|x_{n+1}-x_{n+2}\right|+\ldots+\left|x_{m-1}-x_{m}\right| \\
& \leq \frac{1}{2^{n}}+\frac{1}{2^{n+1}}+\ldots+\frac{1}{2^{m-1}}=\frac{1}{2^{n}} \sum_{i=0}^{m-1-n} \frac{1}{2^{i}} \\
& <\frac{1}{2^{n}} \sum_{i=0}^{\infty} \frac{1}{2^{i}}=\frac{1}{2^{n}} \cdot \frac{1}{1-\frac{1}{2}}=\frac{2}{2^{n}} .
\end{aligned}
$$

But we know that $\frac{2}{2^{n}} \rightarrow 0$ (by the way, how do you prove this without using \log ?), so given an arbitrary $\varepsilon>0$, there is an event $N \in \mathbb{N}$ such that $\forall n \geq N, \frac{2}{2^{n}}<\varepsilon$. Therefore, for all $m>n \geq N$,

$$
\left|x_{n}-x_{m}\right|<\frac{2}{2^{n}}<\varepsilon .
$$

This, by definition, means that $\left(x_{n}\right)_{n}$ is Cauchy, so by the Cauchy Convergence Criterion, it converges.
3. Let $\left(x_{k}\right)_{k}$ be a sequence.
(a) Define another sequence $\left(a_{n}\right)_{n}$ such that for each $k \in \mathbb{N}, x_{k}$ is the $k^{\text {th }}$ partial sum of the series $\sum_{n=1}^{\infty} a_{n}$.

Solution. We need to find $\left(a_{n}\right)_{n}$ satisfying the following system of linear equations:

$$
\left\{\begin{array}{l}
a_{1}=x_{1} \\
a_{1}+a_{2}=x_{2} \\
a_{1}+a_{2}+a_{3}=x_{3} \\
\vdots \\
a_{1}+a_{2}+\ldots+a_{k}=x_{k} \\
\vdots
\end{array}\right.
$$

Thus, put $a_{1}:=x_{1}, a_{2}:=x_{2}-x_{1}, a_{3}:=x_{3}-x_{2}$, and so on. More formally, by induction, supposing that x_{k-1} is indeed the $(k-1)^{\text {th }}$ partial sum, we see that $x_{k}=a_{1}+a_{2}+\ldots+a_{k}=$ $\left(a_{1}+a_{2}+\ldots+a_{k-1}\right)+a_{k}=x_{k-1}+a_{k}$, which gives

$$
a_{k}:=x_{k}-x_{k-1} .
$$

One can now verify, once again, that defining a_{k} this way indeed satisfies the desired property:

$$
\begin{aligned}
\sum_{n=1}^{k} a_{n} & =a_{1}+a_{2}+\ldots+a_{k} \\
& =x_{1}+\left(x_{2}-x_{1}\right)+\left(x_{3}-x_{2}\right)+\ldots\left(x_{k-1}-x_{k-2}\right)+\left(x_{k}-x_{k-1}\right)=x_{k}
\end{aligned}
$$

(b) Once again, suppose that for each $n \in \mathbb{N},\left|x_{n+1}-x_{n}\right| \leq \frac{1}{2^{n}}$, and, using part (a) and the comparison test for series, prove that $\left(x_{n}\right)_{n}$ converges.

Hint: By part (a), the sequence $\left(x_{k}\right)_{k}$ converges if and if $\sum_{n=1}^{\infty} a_{n}$ converges.
Solution. As the hint states, it is enough to prove that the series $\sum_{n=1}^{\infty} a_{n}$ converges. But note that $\left|a_{n+1}\right|=\left|x_{n+1}-x_{n}\right| \leq \frac{1}{2^{n}}$ and the series $\sum_{n=0}^{\infty} \frac{1}{2^{n}}$ converges, so by the Comparison Test for series, $\sum_{n=1}^{\infty} a_{n}$ also converges.
4. Fix a real $\lambda>1$.
(a) Prove that for any fixed integer $k \geq 0, \lim _{n \rightarrow \infty} \frac{n^{k}}{\lambda^{n}}=0$.

Solution. We use the ratio test for sequences:

$$
\frac{\frac{(n+1)^{k}}{\lambda^{n+1}}}{\frac{n^{k}}{\lambda^{n}}}=\frac{\lambda^{n}}{\lambda^{n+1}}\left(\frac{n+1}{n}\right)^{k}=\frac{1}{\lambda}\left(\frac{n+1}{n}\right)^{k} \rightarrow \frac{1}{\lambda} \cdot 1^{k}=\frac{1}{\lambda}<1
$$

so, $\lim _{n \rightarrow \infty} \frac{n^{k}}{\lambda^{n}}=0$.
(b) Conclude that for any polynomial $p(x), \lim _{n \rightarrow \infty} \frac{p(n)}{\lambda^{n}}=0$.

Solution. Let $p(x)=a_{d} x^{d}+a_{d-1} x^{d-1}+\ldots+a_{1} x+a_{0}$. Because the limit respects multiplication and addition, by part (a), for each $0 \leq k \leq d$, the sequence $\left(\frac{p(n)}{\lambda^{n}}\right)_{n}$ converges, we get

$$
\lim _{n \rightarrow \infty} \frac{p(n)}{\lambda^{n}}=\lim _{n \rightarrow \infty} \sum_{k=0}^{d}\left(a_{k} \frac{n^{k}}{\lambda^{n}}\right)=\sum_{k=0}^{d}\left(a_{k} \lim _{n \rightarrow \infty} \frac{n^{k}}{\lambda^{n}}\right)=\sum_{k=0}^{d}\left(a_{k} \cdot 0\right)=0 .
$$

(c) Also prove that for any polynomial $p(x), \sum_{n=1}^{\infty} \frac{p(n)}{\lambda^{n}}$ converges.

Solution. Firstly, note that we cannot conclude the convergence of $\sum_{n=1}^{\infty} \frac{p(n)}{\lambda^{n}}$ from the fact that $\frac{p(n)}{\lambda^{n}} \rightarrow 0$ because the latter is only a necessary condition for convergence of series, but it is not sufficient (remember $\sum_{n=1}^{\infty} \frac{1}{n}$). Thus, we have to come up with something else.
Note that if $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ both converge, then so does $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)$ (why?); also, if $\sum_{n=1}^{\infty} a_{n}$ converges and $c \in \mathbb{R}$, then $\sum_{n=1}^{\infty}\left(c a_{n}\right)$ converges. Therefore, writing $p(x)=$ $a_{d} x^{d}+a_{d-1} x^{d-1}+\ldots+a_{1} x+a_{0}$, we see that it is enough to show that $\sum_{n=1}^{\infty} \frac{n^{k}}{\lambda^{n}}$ converges, for any fixed integer $k \geq 0$.
To this end, we use the ratio test for series. As calculated in part (a), $\frac{\frac{(n+1)^{k}}{\lambda+n}}{\frac{n^{k}}{\lambda^{n}}} \rightarrow \frac{1}{\lambda}<1$, so the series converges.
5. Let $\left(a_{n}\right)_{n}$ be a sequence of non-negative reals. Prove that if $\sum_{n=1}^{\infty} a_{n}$ converges, then for any $k \geq 1, \sum_{n=1}^{\infty} a_{n}^{k}$ also converges.

Solution. Which is bigger, a_{n} or a_{n}^{k} ? This, of course, depends on whether $a_{n} \leq 1$ or not, but we are not given this information. However, we know that $\sum_{n=1}^{\infty} a_{n}$ converges, which implies that $a_{n} \rightarrow 0$. Therefore, even though the first hundred million terms may be greater than 1 , eventually, $a_{n}<1$. Because the convergence of series doesn't depend on the first finitely many terms, we may assume without loss of generality that $a_{n}<1$ for every $n \in \mathbb{N}$. Thus, $a_{n}^{k} \leq a_{n}$ and the comparison test applies.
6. (a) Suppose that $\sum_{n=1}^{\infty} a_{n}^{2}$ and $\sum_{n=1}^{\infty} b_{n}^{2}$ both converge, and prove that $\sum_{n=1}^{\infty} a_{n} b_{n}$ converges. Solution.

Lemma. For any $a, b \in \mathbb{R}, a b \leq \frac{a^{2}+b^{2}}{2}$.
Proof. Follows from $a^{2}+b^{2}+2 a b=(a+b)^{2} \geq 0$.
Because both $\sum_{n=1}^{\infty} a_{n}^{2}$ and $\sum_{n=1}^{\infty} b_{n}^{2}$ converge, so does the series $\sum_{n=1}^{\infty} \frac{1}{2}\left(a_{n}^{2}+b_{n}^{2}\right)$. Therefore, by the lemma and the comparison test, the series $\sum_{n=1}^{\infty} a_{n} b_{n}$ also converges.
(b) For each real $\lambda>2$, construct an example of $\left(a_{n}\right)_{n},\left(b_{n}\right)_{n}$ such that $\sum_{n=1}^{\infty} a_{n}^{\lambda}$ and $\sum_{n=1}^{\infty} b_{n}^{\lambda}$ both converge, but $\sum_{n=1}^{\infty} a_{n} b_{n}$ diverges.
Solution. Put $a_{n}=b_{n}:=\frac{1}{n^{1 / 2}}$. Then, $a_{n}^{\lambda}=b_{n}^{\lambda}=\frac{1}{n^{\lambda / 2}}$. Because $\lambda / 2>1$, the series $\sum_{n=1}^{\infty} \frac{1}{n^{\lambda / 2}}$ converges (we proved this in class). However, $a_{n} b_{n}=\frac{1}{n}$ and the series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.
7. (Tricky) Let $\left(x_{n}\right)_{n}$ be sequence and $L \in \mathbb{R}$. Suppose that any subsequence $\left(x_{n_{k}}\right)_{k}$ has a further subsequence $\left(x_{n_{k_{l}}}\right)_{l}$ that converges to L. Prove that $\left(x_{n}\right)_{n}$ converges to L.
Hint: Prove the contrapositive. Assume that $\left(x_{n}\right)_{n}$ doesn't converge to L and build a subsequence "far" from L.
Solution. Suppose for contradiction that it is not true that $\left(x_{n}\right)_{n}$ converges to L. By definition, this means that there is $\varepsilon>0$ such that for every $N \in \mathbb{N}$ (i.e. no matter how far we go) there is an index $n \geq N$ with $\left|x_{n}-L\right| \geq \varepsilon$. Using this, just like we did in the proof of Claim in Problem 1 above, we get a subsequence $\left(x_{n_{k}}\right)_{k}$ such that $\left|x_{n_{k}}-L\right| \geq \varepsilon$ for every $k \in \mathbb{N}$. However, by our hypothesis, this subsequence must contain a further subsequence that converges to L, which is impossible (every term of that subsequence is at least ε distance away from L).

