
MATH 347: FUNDAMENTAL MATHEMATICS, FALL 2015

PRACTICE PROBLEMS FOR CHAPTER 14 AND THEIR SOLUTIONS

1. Let (xn)n be a sequence and a, b be reals with a < b. Suppose that for each N ∈ N there is
n ≥ N such that xn ∈ [a, b]. Prove that (xn)n has a convergent subsequence whose limit
is in [a, b].

Solution. Note that choosing increasing values of N we can get many indices n for which
xn ∈ [a, b]. More precisely:

Claim. There is a subsequence (xnk)k all of whose members are in [a, b].

Proof of Claim. We define such a subsequence by induction as follows. For k = 1, taking
N ∶= 1, we get n1 ≥ 1 with xn1 ∈ [a, b]. For k = 2, we take N ∶= n1 + 1 and get n2 ≥ N > n1

with xn2 ∈ [a, b]. Continue by induction: assuming nk is defined, we take N ∶= nk + 1 and
get nk+1 ≥ N > nk with xnk+1 ∈ [a, b]. Thus, we get a subsequence (xnk)k all of whose
members are in [a, b]. ⊣

The subsequence (xnk)k is bounded because it is contained in [a, b], so by the Bolzano–
Weierstrass theorem, it has a convergent subsequence (xnkl)l. Because each member of
this subsequence is ≥ a and ≤ b, so must be its limit because limits respect ≥ and ≤, as
proven in class. Hence, lim

l→∞
xnkl ∈ [a, b]. �

2. Suppose that for each n ∈ N, ∣xn+1 − xn∣ ≤ 1
2n , and prove that (xn)n is Cauchy. Deduce

that (xn)n converges.

Solution. For any natural numbers m > n, we can bound the distance ∣xn − xm∣ using the
distances between the consecutive members and the triangle inequality:

∣xn − xm∣ ≤ ∣xn − xn+1∣ + ∣xn+1 − xn+2∣ + ... + ∣xm−1 − xm∣

≤ 1

2n
+ 1

2n+1
+ ... + 1

2m−1
= 1

2n

m−1−n
∑
i=0

1

2i

< 1

2n

∞
∑
i=0

1

2i
= 1

2n
⋅ 1

1 − 1
2

= 2

2n
.

But we know that 2
2n → 0 (by the way, how do you prove this without using log?), so

given an arbitrary ε > 0, there is an event N ∈ N such that ∀n ≥ N , 2
2n < ε. Therefore, for

all m > n ≥ N ,

∣xn − xm∣ < 2

2n
< ε.

This, by definition, means that (xn)n is Cauchy, so by the Cauchy Convergence Criterion,
it converges. �

3. Let (xk)k be a sequence.

(a) Define another sequence (an)n such that for each k ∈ N, xk is the kth partial sum of

the series
∞
∑
n=1

an.
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Solution. We need to find (an)n satisfying the following system of linear equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 = x1
a1 + a2 = x2
a1 + a2 + a3 = x3
⋮
a1 + a2 + ... + ak = xk
⋮

Thus, put a1 ∶= x1, a2 ∶= x2 −x1, a3 ∶= x3 −x2, and so on. More formally, by induction,
supposing that xk−1 is indeed the (k−1)th partial sum, we see that xk = a1+a2+...+ak =
(a1 + a2 + ... + ak−1) + ak = xk−1 + ak, which gives

ak ∶= xk − xk−1.
One can now verify, once again, that defining ak this way indeed satisfies the desired
property:

k

∑
n=1

an = a1 + a2 + ... + ak

= x1 + (x2 − x1) + (x3 − x2) + ...(xk−1 − xk−2) + (xk − xk−1) = xk.
�

(b) Once again, suppose that for each n ∈ N, ∣xn+1 − xn∣ ≤ 1
2n , and, using part (a) and the

comparison test for series, prove that (xn)n converges.

Hint: By part (a), the sequence (xk)k converges if and if
∞
∑
n=1

an converges.

Solution. As the hint states, it is enough to prove that the series
∞
∑
n=1

an converges. But

note that ∣an+1∣ = ∣xn+1−xn∣ ≤ 1
2n and the series

∞
∑
n=0

1

2n
converges, so by the Comparison

Test for series,
∞
∑
n=1

an also converges. �

4. Fix a real λ > 1.

(a) Prove that for any fixed integer k ≥ 0, lim
n→∞

nk

λn
= 0.

Solution. We use the ratio test for sequences:

(n+1)k
λn+1
nk

λn

= λn

λn+1
(n + 1

n
)
k

= 1

λ
(n + 1

n
)
k

→ 1

λ
⋅ 1k = 1

λ
< 1,

so, lim
n→∞

nk

λn
= 0. �

(b) Conclude that for any polynomial p(x), lim
n→∞

p(n)
λn

= 0.
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Solution. Let p(x) = adxd + ad−1xd−1 + ... + a1x + a0. Because the limit respects multi-

plication and addition, by part (a), for each 0 ≤ k ≤ d, the sequence (p(n)λn )
n

converges,

we get

lim
n→∞

p(n)
λn

= lim
n→∞

d

∑
k=0

(ak
nk

λn
) =

d

∑
k=0

(ak lim
n→∞

nk

λn
) =

d

∑
k=0

(ak ⋅ 0) = 0.

�

(c) Also prove that for any polynomial p(x),
∞
∑
n=1

p(n)
λn

converges.

Solution. Firstly, note that we cannot conclude the convergence of
∞
∑
n=1

p(n)
λn

from the

fact that p(n)
λn → 0 because the latter is only a necessary condition for convergence

of series, but it is not sufficient (remember
∞
∑
n=1

1

n
). Thus, we have to come up with

something else.

Note that if
∞
∑
n=1

an and
∞
∑
n=1

bn both converge, then so does
∞
∑
n=1

(an + bn) (why?); also,

if
∞
∑
n=1

an converges and c ∈ R, then
∞
∑
n=1

(can) converges. Therefore, writing p(x) =

adxd + ad−1xd−1 + ...+ a1x+ a0, we see that it is enough to show that
∞
∑
n=1

nk

λn
converges,

for any fixed integer k ≥ 0.

To this end, we use the ratio test for series. As calculated in part (a),
(n+1)k
λn+1
nk

λn

→ 1
λ < 1,

so the series converges. �

5. Let (an)n be a sequence of non-negative reals. Prove that if
∞
∑
n=1

an converges, then for any

k ≥ 1,
∞
∑
n=1

akn also converges.

Solution. Which is bigger, an or akn? This, of course, depends on whether an ≤ 1 or not,

but we are not given this information. However, we know that
∞
∑
n=1

an converges, which

implies that an → 0. Therefore, even though the first hundred million terms may be
greater than 1, eventually, an < 1. Because the convergence of series doesn’t depend on
the first finitely many terms, we may assume without loss of generality that an < 1 for
every n ∈ N. Thus, akn ≤ an and the comparison test applies. �

6. (a) Suppose that
∞
∑
n=1

a2n and
∞
∑
n=1

b2n both converge, and prove that
∞
∑
n=1

anbn converges.

Solution.
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Lemma. For any a, b ∈ R, ab ≤ a2+b2
2 .

Proof. Follows from a2 + b2 + 2ab = (a + b)2 ≥ 0. ⊣

Because both
∞
∑
n=1

a2n and
∞
∑
n=1

b2n converge, so does the series
∞
∑
n=1

1

2
(a2n + b2n). Therefore,

by the lemma and the comparison test, the series
∞
∑
n=1

anbn also converges. �

(b) For each real λ > 2, construct an example of (an)n, (bn)n such that
∞
∑
n=1

aλn and
∞
∑
n=1

bλn

both converge, but
∞
∑
n=1

anbn diverges.

Solution. Put an = bn ∶= 1
n1/2 . Then, aλn = bλn = 1

nλ/2 . Because λ/2 > 1, the series
∞
∑
n=1

1

nλ/2
converges (we proved this in class). However, anbn = 1

n and the series
∞
∑
n=1

1

n
diverges. �

7. (Tricky) Let (xn)n be sequence and L ∈ R. Suppose that any subsequence (xnk)k has a
further subsequence (xnkl)l that converges to L. Prove that (xn)n converges to L.

Hint: Prove the contrapositive. Assume that (xn)n doesn’t converge to L and build a
subsequence “far” from L.

Solution. Suppose for contradiction that it is not true that (xn)n converges to L. By
definition, this means that there is ε > 0 such that for every N ∈ N (i.e. no matter how
far we go) there is an index n ≥ N with ∣xn − L∣ ≥ ε. Using this, just like we did in the
proof of Claim in Problem 1 above, we get a subsequence (xnk)k such that ∣xnk − L∣ ≥ ε
for every k ∈ N. However, by our hypothesis, this subsequence must contain a further
subsequence that converges to L, which is impossible (every term of that subsequence is
at least ε distance away from L). �
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